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Quantum field theory on Cliff ord-Klein space-times. The 
effective Lagrangian and vacuum stress-energy tensor 

J S Dowker and Richard Banach 
Department of Theoretical Physics, The University of Manchester, Manchester, M13 9PL, 
UK 

Received 15 May 1978 

Abstract. The vacuum-averaged stress-energy tensor is calculated for a scalar field on a 
variety of static space-times, T 0 M 3 ,  where the spatial section, M3, is a Clifford-Klein 
space form of the flat or spherical type, R 3 / T ,  or S3/r. The particular examples when M3 
is a Klein-bottle waveguide, R 0 K2, or a lens-space, S3/Z,,,, are treated in most detail. It 
is found that the vacuum stress on quotient spaces is not of the same tensorial structure as 

that ‘twisting’ the field alters the vacuum stress compared to the untwisted theory. Values 
for the total energies in the three types of polyhedral cellular decompositions of S 3  are 
given. Dirichlet boundary conditions for rectangular cavities are also considered. 

R ~” -1 2g,,,RR. This leads to difficulties with the back-reaction problem. It is further found 

1. Introduction 

In  this paper we wish to present some extensions and applications of a zeta-function 
technique introduced earlier (Dowker and Critchley 1976a, 1977, Dowker and 
Kennedy 1978, Hawking 1977) in connection with external field problems, in par- 
ticular with quantum field theory in curved spaces. 

The interest lies in considering spaces with boundaries and topologically non- 
trivial space-times, especially those that are multiply connected. Our discussion and 
approach are different to those of Isham (1978) whose interesting and related work 
was received whilst ours was in progress. For convenience we have adopted his 
terminology of ‘twisted’ fields. 

In the next section some general theory is given which is then applied to different 
systems chosen to bring out various aspects of the formalism. The Klein-bottle 
waveguide is discussed in § §  4 , 7  while § 9 is concerned with curved space examples- 
manifolds locally isometric spatially to the Einstein universe. 

The quantity we shall be concentrating on will be the vacuum-averaged stress- 
energy tensor of a scalar field. This is only one aspect of the quantum field theory, of 
course, and a discussion of the Fock space constructions is deferred to another time. 

2. Quantum field theory on multiply connected spaces 

The basic formalism has been given elsewhere (Dowker 1972a, b) but will be recapit- 
ulated here. Let M be a multiply connected Riemannian space of Euclidean signa- 
ture. It could be, for example, the Euclidean section of a space-time or it could be the 
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2256 J S  Dowker and R Banach 

spatial section of a static manifold. M is given as the quotient space 

M = fip- (1) 

where fi is the universal covering space of M and r is isomorphic to the fundamental 
group of M, 7r l (M) .  r is a symmetry group of M, is discontinuous, acts freely and 
without fixed points (e.g. Wolf 1967). 

Quantum mechanics on M has been discussed by Laidlaw and DeWitt (1971), 
Schulman (1971), Dowker (1972a) and Finkelstein and Rubenstein (1968). We shall 
make use of the descriptions and notations of Dowker (1972a). 

For simplicity, in this paper, we shall deal with functions on M, as in scalar field 
theory, and begin by writing down the expression for the kernel K of the heat 
equation on M, in terms of R, that on fi, 

K ( 4 k  d, 7 ) =  1 a(r)R(sb, qgy, 7). (2 1 
Y 

The connection with quantum field theory comes about when we identify -iT with 
the proper time in the Fock-Schwinger-DeWitt fifth-parameter formalism (Fock 
1937, Schwinger 1951, DeWitt 1975). 

On the left of equation (2), 46 and qg refer to points of M while on the right they 
stand for the two fixed pre-images in fi of these points. The set of these pre-images is 
isomorphic to M and is such that all points of fi can be generated from it by 
application of r, qoy. The multiplier, a ( y ) ,  is a unitary, one-dimensional represen- 
tation of r, i.e. 

a(y1)a  (Y2) = U(Y2Yl). (3 ) 
J? satisfies an equation 

and K 
a -K + A K  = 1 

a7 

where A is the restriction of A to M. For A we have in mind a Laplace operator. 
In terms of the eigenproblem 

A I n')  = i;" 1 n')  

Z? can be formally written (we assume h', 2 0): 
J? = e-AT - - 1 e - i - T l ~ ) ( ~ l ,  

n 

A function on M can be thought of as a function o n  fi, a, which satisfies 

% ? o Y )  = a (Y)+(qo) 

or, in Dirac notation, 

(4oY I +) = a (Y ) (qo I +). 

(4oY I &  = (401 9-' 14) 
Define the operator 9 by 
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and assume that it commutes with A which it will if A is a covariant operator on A? 
since r is a symmetry group of a. This means that, for example, 

K($’, G’”y, 7 ) =  Z ( i ’ y - ’ ,  G”, T )  

or 

(6 1 

where the sum runs over all elements of r, of which there are /rl. 
An equation like (6) will hold for matrix elements of all covariant (and therefore 

invariant) operators on A?. 
Using (6) it can easily be shown that K satisfies the semigroup property on M if 

satisfies it on A?. 
In Dowker and Critchley (1976a) it was shown that the effective Lagrangian was 

related to the zeta function of the covariant Laplacian and we turn to the relation of 
the zeta functions on M and 2. This easily follows from ( 2 ) .  

In terms of the Mellin transforms we have the connection between 5 and K . r i C  

and between f and 

where we have assumed that none of the h’, are zero. (A zero eigenvalue can easily be 
allowed for.) 

It is a straightforward consequence of ( 2 ) ,  ( 7 )  and ( 8 )  that 5 and i are related by 
the image sum 

((s, 46 1416) = C a ( v ) i ( s ,  46 Is~r). 
Y 

In terms of the eigenvalues h‘, and eigenvectors In’) (9) can be rewritten 

(9) 

or, from (6), 

The sum over y can be re-arranged by the replacement y + ~ 7 p - l  and if (5) is used 
there results 

The reason for these manipulations is that we require, in field theory, the coin- 
cidence limit 4; = 4b and then the integrated zeta function, 
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The sum over CL allows us to employ the completeness relation in hi, 

to give 

The  analysis is now standard quantum mechanics. The  eigenspace spanned by the 
eigenvectors 16) corresponding to  the same eigenvalue in forms the carrier space for a 
representation of the symmetry group r. Hence we can write (1 1) as 

where the character xi(y) is the trace of 
us rename it x a ( y )  for uniformity and then note that 

in the i-eigenspace. a(?)  is a character. Let 

nai = IT1 C xa(y>xi(r> 
Y 

is the number of times the irreducible representation ‘ a ’  occurs in the i-represen- 
tation, so that l a ( s )  ‘simplifies’ to 

If r=1,  so that M = h i ,  n,i is just the degeneracy of the i-eigenvalue, as is 

The  identity (6) can be applied directly to (9) to yield 
correct. 

where the term y = 1 has been separated off and we have chosen a (1) = 1, as we may. 
[(s) is the integrated zeta function on  hi and f ( s ,  y )  is defined by 

&, r > =  1r1-l c ,i &bP 14bCLy)dqb = 1P-l 1- f(6’Ii’Y)dG’. (15) 
W M  M 

As a simple example of some of these formulae the reader may care to derive the 
zeta-function on a torus, say a circle, from the eigenvalues and functions on  flat 
Euclidean space using both box and 6-function normalisation. The  answer can, of 
course, be written down immediately, but the calculation is instructive. 

A t  this point it might be useful t o  mention that typically one  of the things we are 
interested in is the one-loop effective action W“). In Dowker and Critchley (1976a) it 
is shown that this is given by 

with the divergences exhibited as a pole of residue l (0 ) .  From (14) 

l a @ ) =  lrl-lm+ c 4 r ) m  r) 
Y f l  

but 
i ( 0 ,  r>=o if y f1, 
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which follows from Minakshisundaram and Pleijel (1949, p 254) and so 

im= iri-’&v 

IGI = Irl MI. 

This means that the divergences are the same in M as in hi, allowing for the different 
volumes, 

We require this to be so since the spaces are locally identical. 

3. Simple examples 

It can be seen from (13) that the effect of dividing hi by r is to select and re-arrange 
the eigenvalues. If one wants to write down an explicit formula for m(s)  in simple 
cases it is easiest to determine the eigenvalues and degeneracies appropriate to the 
periodicity condition, 

J ( 4 ” Y )  = a ( y ) 4 h ) ,  (17) 

directly. For example if M is the one-torus, or circle, S ’  ( 0 :  0 S B .s 2 ~ ) ,  hi is the real 
line R’ and r is the infinite cyclic group 2, such that each element is labelled by an 
integer, n. The effect of acting on 8 by y,, is a (lattice) translation By,, = B + 2 ~ n .  Then 
(17) becomes 

&e + 2 ~ n )  = a ( m ) & e )  (18) 

a(?,,) = exp(2nina), O S a S i ,  (19) 

with in general 

as the one-dimensional representation of Z,, labelled by a. This is an oft-discussed 
example (e.g. Schulman 1968, 1971, Dowker 1977). 

The eigenvalues and functions of the Laplacian d2/dB2 are - k 2  and 
exp( ikO) / (2~)”~ where, from (18) and (19), k = n -a, with n an integer. The fields on 
S’ can thus be labelled by the parameter a, say q5cn). 

As a quantity of physical interest we can calculate the vacuum average of the 
Hamiltonian E = (A) for the 4 ( a )  fields. It is shown in Dowker and Kennedy (1978) 
that in flat space E is given by 

E =ti t ~ ~ - ~ [ c & ( O ) ]  x 2 (20) 
where [ f h ( s ) ]  is the equal-time zeta-function on d-dimensional space-time, and trd-’ 
stands for an integration over the spatial coordinates. The extra factor of 2 occurs 
because we are considering complex fields. [&(s)] can be related to &-1(s), the zeta 
function on the spatial section, by 

so that for E we have, therefore, 

E = $[d - 1 (- i) x 2 (22) 
where [d-l(s) is the integrated zeta function on the spatial section, 

[d-lS)’frd-l d-l(S). 
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If d = 2 we have for the q5(a) fields introduced above 
30 

,$'(s)= 1 kP2' = 1 ( n  -a) -2s .  
k n = --oc 

If a is zero the zero-eigenvalue, n = a ,  is omitted from the sum. Re-arranging the 
terms leads to the expression 

61"'(s)=lR(2s, a ) + l R ( 2 S ,  1 - a )  

in terms of the Hurwitz-Lerch-Hermite zeta function (Whittaker and Watson 1915), 
D 

I&, w )  = C ( n  + w)-', 
n =O 

which has the specific values 

1 
CR(-P, w = - - q p +  1 ( w  ) 

P + l  

where the (pp(w) are related to the Bernoulli polynomials (Lindelof 1905), and have 
the property ( ~ ~ ~ ( 1 -  w )  = (pZk(w).  Then for E we find 

51 
- 2  E = -44,(a)x2 = -7T n - 2  cos(2n7Tcy)=cy - a 2 - i .  

fl=l 

Two special cases are cy = 0, for which 

E = E(")= - A x  2 (23) 

+ & x 2 .  (24) 

and a = t ,  for which 
E = E('/2) = 

The value (23) agrees with that first calculated by Ford (1975) who considered real 
fields, so no factor of two, and used an energy cut-off. The value (24) is the same, 
apart again from the factor of two due to the complexification, as the one evaluated by 
Isham (1978), for what he terms 'twisted' (real) scalar fields, using an 'energy zeta- 
function' method (cf Gibbons 1977). I t  can be seen from (18) and (19) that for real 
fields, q5cn), the only possible values of a are 0 and $. 

a = 0 corresponds to the trivial, a(y,,) = 1, representation of 2, while a = t gives 
the non-trivial representation factored by Z2, a(y,,) = (-l)n. 

In general for real fields a ( y )  must be real also, which means that every a(?)  is 
either plus or minus one. This gives our classification of these fields on M, which is 
precisely the same as Isham's (1978) expressed in terms of the homomorphisms of 
T ~ ( M )  into z2 ( - H ' ( ~ T ~ ;  z , ) -H ' (M;  2 2 ) ) .  

Isham proves that there are no complex twisted scalar fields for M = S'. Our 
development seems to lack such a restriction in that the fields c $ ( ~ )  seem to interpolate 
quite nicely between the two limits a = 0 and a = 1. It is possible that these fields do 
not qualify as 'twisted' on Isham's definition. 

The significance of the parameter a in the case of quantum mechanics on multiply 
connected spaces has been discussed by Schulman (1971). In general terms, on the 
multiply connected space S' the Hamiltonian is not essentially self-adjoint and admits 
a one-parameter family of extensions each member of which describes a different 
physical situation. One precise physical possibility is that a is proportional to the flux 
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in an impenetrable solenoid passing through S’, as in the Aharonov-Bohm effect. In 
this example we see that a is not a geometric quantity intrinsic to the manifold. 

In  general there are two basic methods available for calculating quantities of 
interest such as 5. One is that employed above and could be called the eigenvalue 
approach. The other is to obtain f from e by a non-eigenvalue method, such as 
images in flat space. To illustrate these two methods we shall consider the case when 
M is three dimensional and is a Klein bottle, K2,  in the x - y  plane, times the z axis, 2. 
We are interested in finding the energy density (foe) and the total energy per unit z 
slice of this ‘waveguide’. The ordinary rectangular waveguide was treated by Dowker 
and Kennedy (1978) and some comments can be found below in § 5 .  

4. The Klein-bottle waveguide, X1 

Firstly we will use the direct image method (Dowker and Critchley 1976b, Brown and 
Maclay 1969) which actually does not involve zeta-function regularisation, the point 
being that it is only the y = 1 term in (9) that produces the divergences and, in flat 
space-time, the renormalisation (or subtraction) procedure is just to drop this term 
since it corresponds to the infinite free space contribution (cf also Candelas and 
Deutsch 1977). There is then no need to introduce f ,  and (foe) is evaluated as a 
coincidence limit of a differential operator acting on the Feynman Green function 
G(x, XI)= l (1 ,  x, x’)  in a, by now, standard fashion. 

For the conformally coupled real scalar field in flat space-time we have the 
particular expression 

(po0(x)) = lim i[(25+;) do d o +  (25-t)  ai di!]G(x, x’)= [FootrG] (25) 
X ” X  

with 8 = a .  
The Klein bottle can be regarded (e.g. Wolf 1967, Kobayashi and Nomizu 1963) as 

the real plane, R2, factored by the group that identifies (x, y )  with (x + p a ,  (-1)”y + 
2mb), for integer p and m. The actual Klein bottle K 2  can be taken as the region 
0 s x s a, -b s y s b so that its area is 2ab. The region 0 s x s 2a, -b G y S b provides 
a double covering of K 2 .  

The image form of G(x,  x‘), (9), can now be written down by hand, 

G(x, x ’ )  = 7 i “  [ [ ( x  - ~ ’ - 2 2 n a ) ~ + ( y  - y ’ -  2mb)2+ ( z  - z ’ ) ~ -  ( t  - t , ) 2 ] -1 
41r n,m=-m 

+ { [ x - x’ - ( 2 n  + l )aI2 + ( y  + y ’ - 2 ~ 2 b ) ~  + (2 - z ’ ) ~  - ( t  - t’)2}-11. (26) 

For simplicity we have taken all the a ( 7 )  equal to unity, that is, the boundary 
conditions are the standard ‘periodic’ ones. Other possibilities will be treated later in 
9 7. 

The first sum in (26)  is just the Green function for an ordinary rectangle with sides 
2a and 2b. The corresponding constant energy density is that derived by Dowker and 
Critchley (1976b), 

m 
(foo)l =-(32r2)-’  ~ ’ ( n 2 a 2 + m 2 6 2 ) - 2  

-m 

(a result independent of 5) .  
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By contrast, the second sum in (26), produces an energy density which is a function 
of Y, 

2a2(45 - 1)(2n + 1)2 65- 1 
(foe,, = ir-2 z ( [ ( 2 n + l ) 2 a 2 + 4 ( y - m b )  2 ] 3 -  [(2n+1)2a2+4(y-mb)2]2 

For the conformally coupled case the complete energy density is 

(28) 
00 2 2 - 2  2a2  (2n + 112 

-m 3ir -m[(2n+1)2a2+4(y-mb)2]3 '  (?oo)xz= -(32ir2)-' x ' ( n 2 a 2 + m  b ) 2 c  

The infinite Mobius strip value is obtained by letting b tend to infinity. This picks 
out the m = 0 term in the double sum to give 

which can be evaluated to yield 
2 

ir 
( foibo).&z = - [ ( ~ - ~ - 2 q - l  tanh 7)sech2 77 tanh 77 -&] 

192a4 

where q = .rry/a. For small q it is found that 

while for large 77 

A plot of this distribution is given in figure 1. 
We note that (fo,,(y))x2 is periodic in y with period b. It is also even in y and 

symmetrical about y = b/2, for positive y. A straightforward integration over the 
Klein bottle produces the total energy for a unit distance in the z direction E(a,  b) as 

E(a,  b ) =  - 7 ( 1 6 i r ~ ~ ) - ' ~ ~ ( 3 ) - u b ( 1 6 . r r ~ ) - ~  1' (n2a2+m2b2)-* (30) 

an expression valid for all 6. (The reason for this is that the &dependent terms are 
surface terms and go out on integration over X 2  because dX2 = 0 .) 

The first part of (30) comes from the y-dependent term. The second part is the 
rectangle expression, and is just an Epstein zeta function (Epstein 1903, 1907) as 
indeed so are the terms in the density (28), or (29). 

Since the properties of this zeta function are very relevant to our calculation they 
will be given here. Firstly define the two-dimensional Epstein zeta function Z by 

Zi$(s, A ) =  f' exp(2ni6m)[(m + g ) A ( m  +g)lPs R e s > l  

where m, g, and h are column matrices, m = (::), etc. A is a 2 x 2 matrix and the tilde 
indicates transpose. 

a2 

n,m=-m 

(31) 
F_ 

m 1 ,m2= -m 
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3 i  

Figure 1. Vacuum energy density on an infinite Mobius strip, of unit circumference, as a 
function of the distance y from the centre of the band ( q  = ay). The lower curve is for a 
normal field and the upper for a twisted one (a = 4). The curves are symmetrical about 
q = o .  

Z satisfies the functional relation 

which is, for us, the basic equation and links the image and eigenfunction approaches, 
as will be seen. In all our applications with rectangular regions the matrix A is 
diagonal. Equation (32) is essentially just the transformation equation for multiple 
theta functions used previously (Dowker 1971) to show the equivalence of eigen- 
function and classical path, or image, methods. 

The previous expressions will now be rewritten in terms of 2. Firstly the density 
(TOO), + (f‘00)2 from (27): 

(fOo)x2= -(327r2)-’Z/::1(2, A)-(16rz)-’( (46- 1 ) ~ ~ ~ + 6 5 - l ) Z ~ b ~ ~ ’ ~ ( 2 ,  a A )  (33) aa 

where 

Next, for the total energy E(a,  b )  we find from (30) 

E(a, !I)= - (7 /16m*) l~ (3 ) -  (ab/16r2)Z1i il(2, A). (34) 
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For the  special case a = b the Epstein zeta function is given by a sum of Hardy's 

zi: El(s, I )=  45R(S)P(s) 

and we have 

E(a, a = -( 1 / 4  T 2 a  2)[(7 7r/4)iR(3 ) - LR(2)P (2 )] * (35) 

The  function defined by (31) and its analytic continuation is an  entire function of s 
unless the components of h are all integers, when Z ( s )  has a pole at s = 1 with residue 
equal to 7r(det Z ( s )  vanishes when s is a negative integer and also when s is 
zero, unless the components of g are all integers when its value is -exp(-27righ). 

After this slight digression we turn to the eigenvalue method and will firstly 
construct the zeta function for the Klein bottle (with periodic boundary conditions). 
The  eigenproblem is discussed by Berger et a1 (1971) and we find for the 'non-local' 
zeta function 

IKZ(S' x, Y I x',  Y') 

cos(nyir/b) cos(ny'7rlb) a a i m ( x - x ' ) / a  = ( a b ) - ' ( c '  E, e 
m=-cc n = O  A h n  
(even) 

+ e ~ i m ( x - x ' ) / a  sin(ny7rlb) sin(ny'7rlb) ), R e s > 1 ,  (36) 
m = - w  n = l  A L n  
(odd) 

where eo = f, and E ,  = 1 for n = 1, 2, . . . and the eigenvalues A,, are given by 

A,, = 7r'(m2a-2+n2b-2). 

(For those who wish to compare our expressions with the discussion in Berger et a1 
(1971) note that our  a and b are half those of Berger et a1 and that there is a factor of 
27r missing in the y-modes of this reference.) 

In the following calculation various coincidence limits of LKz and its derivatives will 
be needed. W e  give them now for convenience. Firstly lKK2 itself, which, after some 
slight manipulation is 

LKZ(S, x, Y 1x9 Y )  
cc m 

= (2ab)-'( 1 (2A;h.o -A;:O)+$ A i :  
m = l  -W 

m w  

+ (-l)mAi: cos(2n7ry/b)). 
m = - m  n = l  

(37) 

This expression can be more simply rewritten in terms of the Epstein zeta function, 

LKZ(s, X, y / x ,  Y ) =  (4ab~ ' ) - ' [Z ( :  EI(s, A-')+ZI;J ; /~ I (S ,  A-')] (38) 
a result which follows more directly by writing (36) in terms of Z, 

LK2(S, x, Y I x', Y '1 
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We now wish to find expressions for the coincidence limits of derivatives of &,. For 
this it will be convenient to make use of the relation 

a2 47T2 a 
-z/oh/(s, A)  = - -Z/E/(s - 1,  A )  ahi ahi s - 1 aA”  

which follows from the definition (31). This is useful because we have for (39) that 

a a  a a  
ax ax’ ahl  a h l  

a a  a a  

= (4a2)-’- - 

= (4b2)-’- - for the first term 
a y  ay’ ah2 ah, 

and 

for the second. a a  2 - 1  a a 
a y  a y ’  ah, ah, 
_ _ _  =(4b ) -- 

We also have in general 

a’ 
ahi ah, (A)”-Z~:~(S, A ) =  -~v~ZI:~(S  - 1,  A). 

Then we find 

and 

(S - 1,  A-’)-Zly ;/J(S - 1 ,  A-’)]. (44) 
a2  a 2-2s 

7T 

4ab 

As an application of these formulae the density (33) will be rederived. From (25) 
the zeta function expression for the density is obtained by replacing G(x, x’) by the 
zeta function, 

where the subscript ‘4’ indicates a space-time zeta function, x = (t, x, y, z) .  

trivial and it is easily shown that 
Our space-time is T 0 Z 0 K2 so that the t and z dependences are essentially 

(46) 
1 1  

lim a. a. r4(s, x ,  x’) = lim a, a,. 14(s, x, x’) = lim -( -14(s - I ,  x, x’) 
X”X x’+x X”X 2 s -  1 

Further, the t and z coincidence limit of is given in terms of the zeta function in the 
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x-y plane (here the Klein-bottle zeta function) by (Dowker and Kennedy 1978) 

i 1  
lim 14(s, x, x’) = - -l& - 1,  X, Y Ix’, Y ’ ) .  
P-9 r 4T s -1  (47) 

2”Z 

Remembering the form of fo0 (equation (25)), the results (38), (43), (44), (46) and 
(47) can all be substituted into (45) to yield 

+--Zlg 25 :l(s -2 ,  A-’)). 
s - 2  

The right hand side is finite in the limit s + 1, which is seen if the functional relation 
(32) is used. This leads, after a little algebra, precisely to expression (33) thus 
demonstrating the equivalence, for this problem, of the eigenvalue and image 
methods. A similar conclusion is also valid for all rectangular and cuboidal problems 
with periodic boundary conditions. 

This result is hardly surprising in view of the basic equivalence of tlfe two forms 
(25) and (45) with G(x, x‘) = 14(1, x, x‘). The only difference is in the treatment of the 
infinities. In  the zeta function eigenvalue method there happen, in the present case, to 
be no infinities. The residue of the pole at s = 1 is proportional to lK2(- l )  which 
vanishes because Z(s) is zero for s a negative integer. This is expected since space- 
time is flat and there are no boundaries. 

In the image method the direct term, corresponding to the m = 0 = n image, 
diverges in the coincidence limit and is simply removed, since it is the infinite free 
space (Minkowski) expression. 

It is helpful just to check the relation G(x, x’) = 14(1, x, x‘). For simplicity, since 
the z and t dependences are not interesting, the z and r coincidence limits will be 
taken. From (39), (47) and (32) we find 

corresponding precisely to the two terms in (26), as expected, when s is set equal to 
unity. The fact that (25) and (45) are equal is then almost guaranteed from the start, 
at least in this case. 

The integrated zeta function on the Klein bottle is best found from (37) and is 

In terms of this the total energy E is given by (Dowker and Kennedy 1978), 

E(u ,  6 ) = ( 8 ~ ) - ’ l k ~ ( - l )  
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which leads to 

E(u, b ) =  (7~ /4&k( - l )+  (r/16)Z'l: tl(-l, A )  

and, again, use of the functional relations for the zeta functions reproduces exactly 
equation (34). This demonstration is, of course, only an integrated version of the local 
one preceding but is included because it is more rapid. 

5. Dirichlet boundary conditions. The slab revisited 

Some preliminary calculations and remarks have been made in our earlier work 
(Dowker and Kennedy 1978) concerning the more complicated cases of Dirichlet (D) 
and Neumann (N) boundary conditions. Consider the standard Casimir geometry of 
infinite parallel plates discussed in many places. We attack this firstly from the 
zeta-function eigenvalue direction. The eigenfunctions are, for D conditions, 

(2/u)'/* sin(mrx/a),  m = 1,2,  

and the zeta function is 

2 m r  -2r m r x  mrx'  
l1(s, x 1 x ' )  = - U m = 1  (-) U sin( 7) sin( 7) 

which can be rewritten in terms of the one-dimensional Epstein zeta function Z. 
defined by 

W 

ZlEl(s)= lm + g / - s  exp(2rimh),  R e s > l ,  
m=--m 

(which is also related to the Hurwitz-Lerch zeta function). For l1 we find 

l 1 ( ~ ,  x I x'> = t r - z s a 2 5 - ' [ ~ I ~ X - O X , ) / 2 a I ( 2 ~ ) - ~ I ( X C O X , ) / 2 a 1 ( 2 ~ ) 1 )  

which can further be transformed into an image form using the relation 

zl-;l(l -2s). r(t - s >  e-2nigh ZlEl(2S) = r2s-f ~ 

Us) 
Thus 

For s = -1 this yields the image form of the Green function and the transformation 
is very familiar in many topics, heat conduction being a good example (Hobson 1888, 
Sommerfeld 1949, Carslaw and Jaeger 1959). 

In this case the t ,  z and y dependences are essentially trivial. For the t, z, y 
coincidence limit of the space-time zeta function we have 
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Further, 

lim do do 14(s, x, x ' )  
x ' -x  

1 1  
= lim a, 8,- 14(s, x, x ' )  = lim ay ay' 14(s, x, x')  = 2 ~ [ 4 ( s  - 1, x, x), (57) 

x"x XI-x 

so that we can construct the energy density (45 )  in this reduced geometry. 
From ( 5  l) ,  or (53), the coincidence limits, 

(5  9) 2-2s 2 s - 3  lim a, ax, l , ( s , x I x ' ) =  r a [ 5 R ( 2 ~ - 2 ) + ~ ~ / x ~ a 1 ( 2 s - 2 ) ]  
x ' + x  

follow easily and for (foe) we find if (56), (57), (58) and (59) are substituted into (45 )  

For conformal coupling 5 = and (61) gives the standard answer. For minimal 
coupling 5 = 0 and (61) is equivalent to the expression quoted by DeWitt (1975), since 

from (52), and 

a2 1 (e - n )-" = r4(cosec4 r e  - 3 cosec' re) .  
-m 

21"?/(4) diverges as the plates are approached, x + 0 or x + a .  The same result is 
obtained from the image method, throwing away the direct term. 

Two questions now arise: What happens on the plates x = 0, x = a, and what is the 
total energy? 

One point is that, in the definition of 2 (equation (52)) if g is an integer the term 
m = -g is excluded from the sum so that 21:1(4) is nor infinite. If one simply sets x 
equal to zero in (61) one finds the value 

the significance of which is not apparent. 
Clearly if (61) is integrated over the slab, O S  x G a, the divergences will produce an 

infinite answer. Yet, if the value (62) is taken seriously, we must remember that at 
x = 0 and x = a, the relevant pole terms in the image sum Z/"?1(4) are to be excluded 
from the integrand. This produces a finite total energy. 

The same finite answer can be obtained if we integrate at an earlier stage. For 
example, the relation between the total energy E and the integrated zeta function can 
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be used right from the start. For the slab the integrated zeta function is a Riemann 
zeta function, 

51(s) = (a/..>2”R(2s>. (63) 

Then, from general theory, the total energy per unit plate area is 

which is the integral of the first term of (61), just as (63) is the integral of the first term 
of the coincidence limit of the local zeta function (58). 

The total energy (64) is independent of 5 and this can be seen in another way. The 
correct expression for the operator Too (see (25)) is 

T o o @ ( x ,  x ’ )  = $[ao do-  8’’ a, d,,- 258”(d, a, +a, a,)]@(x, x ‘ ) ,  (65) 

where @ ( x , x ’ )  is a biscalar. (To obtain (25) ,  which is simpler computationally, the 
equations of motion have been employed. This is legitimate in the present case but is 
not to be recommended in general as it would lead to incorrect anomalies, for 
instance. The two forms agree when 5 = 0.) 

Consider now the spatial integral of the coincidence limit of (65) 

J = 5 [ T o o ( ~ ) @ ( x ,  x ’ ) l  d3x 

and use Synge’s relation 

[a, d l  @I + [a,, a, @l = a,[& @I 
to write 

[ ?oo(0)@] d3x -it J = s,, 
(a similar result holds in curved space-time). 

Equation (66) expresses a slight generalisation of the known fact (DeWitt 1975) 
that the iniproved stress-energy tensor differs from the minimal one by a divergence. 

Classically 0 could be cp(x)cp(x’ )  and J would then be the total field energy. If the 
field satisfies D or N boundary conditions the surface term in (66) can be dropped and 
the total energy is independent of 5. 

This agrees with the construction of the quantum Hamiltonian fi, 

where the wk are mode energies (Fulling 1973). These energies do depend on 5 in 
curved space but the point is that there is no extra, explicit 6 dependence. 

The case we are interested in is when 0 is the Feynman Green function G so that J 
is the vacuum averaged energy E, =@), presumably. If @ is taken to be some 
regularised form of G ( x ,  x ’ ) ,  say J4(s, x ,  x ’ ) ,  the surface term in (66) goes out here as 
well, the argument being that the integrand in the second integral is evaluated strictly 
on dM3 so that the x-dependent part of ll(s, x ,  x )  in (58) does not diverge on aM3. In 
this case, then, J equals E and the value is given by (64). (Note that the actual 
construction of lims+l [TOOl4(s, x ,  x ’ ) ]  gives the same answer whether one uses (25) or 
(65) for Too. The two forms differ by terms of the order of o14(1, x ,  x ’ ) =  14(0, x ,  x ’ )  
which is zero here; or one can check explicitly.) 
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If one did retain all the pole terms and their divergences and if 6 = 2, the boundary 
divergences in (66) would cancel those in the volume integration on the right-hand 
side to produce a finite answer, the left-hand side (DeWitt 1975). However it would 
be only for this value of .$ that the integral equals (I?). For any other value it  would be 
infinite. This situation really refers to an integration not over the whole manifold but 
only over a region which approximates to it (to arbitrary accuracy). That is, for the 
slab, over the open region bounded by x = E and x = a - E  with E > 0. 

From the variational point of view the total energy can be defined from the change 
in the Lagrangian under the special variation Sgoo = 2aSagoO, with a constant. This 
variation does not vanish on the boundary, as variations are normally assumed to do, 
hence in addition to the integral of the local (Too) ‘right up to the boundary’, which 
will diverge, there will be, it is conjectured, an extra boundary contribution that 
cancels off the infinity. 

6. The rectangular waveguide 

This is discussed in Dowker and Kennedy (1978) and we present an additional 
exposition here. The new fact is that, even for the improved tensor, (Too) diverges as 
the corners of the rectangle are approached again rendering the naive total energy 
infinite. However the zeta function method produces a finite result for E which was 
explicitly evaluated in the above reference for two special rectangle shapes. 

The integrated zeta function for the rectangle of sides a and b for D conditions is 
easily found to be 

using the same notation as in § 4. 

by Z and bR, yield 
Then the result € = (l /Br)[i(-l) ,  together with the functional relations obeyed 

When the rectangle is a square and also when b = 2a this result reduces to the ones 
given before (Dowker and Kennedy 1978). 

The values of the function E(r )  = E(r”2, r-1’2) ,  from which E(a, b )  can be found, 
are plotted in figure 2. It is ‘symmetrical’, E ( r )  = E(r-’) ,  about r = 1 (a square) where 
it has a maximum, and it passes through zero for r - 1.75. 

The local zeta function is also easily derived and can be written either in eigen- 
function or in image form, analogously to (51), (53) and (55). We do not write them 
out. The image expression is probably best for an approximate numerical calculation. 

A straightforward calculation based on the image form of the Green function and 
equation (25) yields the expression for the energy density, (Too) = Too: 

W 1 4 b2n2 
m.n=-m 
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Figure 2. Total vacuum energy per unit z slice of a rectangular waveguide of unit area 
( a  = r ” * ,  b = r - ” 2 )  plotted as a function of r for Dirichlet boundary conditions. 

(y = by;  0 s j j  G 1). The + sign is for N and the - for D. We have chosen a rectangle 
with side a = 1. 

The last sum in (69) is the one that contains the divergences as the corners are 
approached. The relevant terms are those with (m,  n ) =  (0, 0 ) ,  (1, 0), (0 , l )  and (1, l),  
corresponding to the four corners. Close to a corner Too goes like -(1/96.rrZr4) where 
r is the distance from the corner. 

Numerical calculation shows that these four terms dominate the entire remainder 
of Too, being at least a factor of 10 larger, at least for D conditions-the only case 
evaluated. For example, at the centre of a square the corner terms contribute an 
amount -1.333(1/8r2) while the rest of the expression adds up to 0.0884(1/8.rr2). At 
the middle of a side the corresponding values are -2.77(1/8.rr2) and 0.142(1/8.rr2). 

The general conclusion is the same as in the slab case. When evaluating the total 
energy the zeta-function method effectively drops the corner poles, actually at the 
corner, so as to produce a finite answer. An infinite value is obtained if the local 
density (69) is integrated right up to the boundary. 

7. ‘Twisted’ fields on the Klein bottle 

These correspond to non-trivial representations, a ( y ) ,  of the fundamental group of 
K2.  For the two-torus, TZ, the lattice group r is ZmOZm and the a ( y )  would then be 
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labelled by two real numbers a and p, 

a(Ynm)=exp[2.rri(na +@)I ,  O s a ,  p s i ,  

a simple extension of the one-dimensional expression (19). 
By contrast the lattice group for K 2  is non-Abelian due to the reflection and so we 

require an Abelian representation of a non-Abelian group. This restricts the possi- 
bilities. We find the two sets of representations, p is an integer, 

a (Ypm) = exp(:!.rripa), 

These mean that in the y-direction the field is either periodic or antiperiodic 
(changes sign). There is no such restriction in the x-direction unless, as in the circle 
case discussed in Q 3, cp is real. Then there are four types of twisted scalar fields. A 
similar conclusion is reached by Hart and DeWitt (private communication). 

In accordance with the general formulae (2), or (9), the phase factors (70) can be 
inserted into the image expression for G(x,x’), (26), or into that for (Too), (27). 
Equivalently, we can now write the partial coincidence limit of the ‘twisted’ zeta 
function on the Klein-bottle waveguide in terms of the Epstein zeta function, 

lim &(s, x, x’; a, P )  
r ’ - f  
2’-2 

x-x’  l /y+y’j  \ 
+e2”IaZ/ I ’p” i (z--~,A)!  

where 0 s a s 1 and p is either zero or one half. 

density of a twisted field on the Mobius strip. Instead of (29) there is 
As an example of the sort of changes that twisting can cause consider the energy 

If a is neither zero nor one half then we should really multiply this expression by two 
since cp must now be taken complex (we did this in 9 3), however we shall ignore this 
point. 

( f$$’)Az can be evaluated to give 

T 2 1  
( T?&))“~, = 48a4 [ -30+ 16a4  - 16a3 + 4 a 2  

+ (a: ) 2  v[tanh 7 cosh(4ar))-sinh(4ar))]] 

for any a. If a = 3 the calculation is trivial directly and is just the previous result, (29), 
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with the last term reversed in sign. Then it is easily found that 

- ( 1 / 2 )  ( T * /  1 4 4 0 ~  4)( 19 - 247 2,  a s q + O  
(r2/ 192 U ‘)( - & + 7 - 3 )  as 7 +CO. 

(Too )hz-{ 

This distribution is also plotted in figure 1. The main effect of the twisting is to 
change the sign of the energy density near the centre of the Mobius band. 

From (72) it is possible to determine the limiting forms for any a as 

( T$))-M2 - (r2/480a4)[-7 + 10(16a4 - y a  + 20a ’)+ 8(1- 2 0 a 2  + 80a4 - 6 4 a 5 ) 7  2] 

for 77 + 0, and 

(T~’),,z-(r2/480a4)[-~+40(4a4-4a3+a2)+40a2~-1 (73) 

for 7 +CO,  if O c a  <t. If + s a  <+ then the last term in (73) reads -40G27-’ 
where 0; = (i - a ) .  

For the intermediate value a = a  the value of ( ?bb/4’) at 7 = 0 equals the limiting 
value as 77 +CO, namely (7r2/11520a4) ,  in fact for this value of a,  (Too) is constant. 
a = a corresponds to the field being antiperiodic in the x-direction on the double 
covering space of the Klein bottle/Mobius band. 

The total energy for the Klein bottle can be found for the twisted fields. A 
straightforward calculation based on (7 1) yields the result, 

E(u,  6, a ) =  -(ab/16r2)Z1; :1(2, A )  
X 

- ( 4 / a 2 )  1 [cos(2ran)- i  c o s ( 4 ~ a n ) ] n - ~  (74) 
n = l  

for p = 0, i.e. periodic fields in the y-direction. For antiperiodic fields (p  = i), we find 
the total energy to be independent of a and equal to just the first term of (74). 

The particular value E(a, b, t )  is given as 

E(a,  b, $)= (7 /16r2)C~(3) - ( (ab/16r2)ZI;  EI(2, A )  

which should be compared with (34), i.e. E(a, b, 0). The first term has been reversed 
in sign. 

The intermediate value E(a,  b, a)  is 

E(u,  b, a)= (5/64r2)&(3)- (Ub/16r2)Z/: A). 

Instead of plotting some of these expressions it is possible to use the values of the 
total energy E(r’”, r-’’2) of a rectangular guide given in figure 2. From equation (68) 
we have that, for example, 

8. Three-dimensional geometries 

As mentioned in Dowker and Critchley (1976b), the spatial section M3 of a flat 
space-time, T OM,, could be any of the Clifford-Klein space forms, R 3 / r .  The Klein 
bottle and rectangular waveguides are two, non-compact examples. All the possible 
types are displayed by Wolf (1967), the original work being done by Hantsche and 
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llZi/zjrll= 

Wendt, for the compact cases. It is simply a question of using the point identifications 
that define these forms in order to write down the image form of the Green function 
and thence to find the averaged energy density. 

For example another (orientable) non-compact variety is X I .  This is defined in 
exactly the same way as the Klein-bottle waveguide, X 2 ,  except that for odd p the sign 
of z is reversed, i.e. we identify (x, y ,  z )  and (x +pa,  ( -1)"y  +2mb,  ( -1)"z) .  

Now (f;,) becomes a function of z as well as of y and we find, e.g., 

CO m 

( f o O ) = - ( 1 / 3 2 r 2 )  1' ( n 2 a 2 + m 2 b 2 ) - 2 - ( 1 / 6 ~ 2 )  [ s ~ ~ + 4 ~ ~ ( 2 n + 1 ) ~ s ~ ~ ]  

where 

n,m=-w n . m = - x  

snm = ( 2 n + 1 ) 2 a 2 + 4 ( y - m b ) z + 4 z 2 .  

In  the limit b + CO, (foe) is symmetrical under rotations about the x-axis. Its profile is 
very similar to the variation of (foe) with y in the Mobius strip example (figure 1 ) .  

The other types of space-forms, 18 in all (Wolf 1967, p 123), can be treated 
similarly. However we baulk at writing down the results for each of them, essentially 
because of the lack of any physical motivation. (There is no technical difficulty.) Hart 
and DeWitt (private communication) have also given some explicit expressions for a 
few cases. Here we shall be contented to give the complete ( f F v )  for a space similar to 
the Klein-bottle waveguide, except that it is periodic in the z-direction (type in 
Wolf 1967). 

We find. 

naI2mb + [ ( - 1 ) "  - l ] y }  
n a { 2 m b + [ ( - 1 ) " -  l ] y }  { 2 m b + [ ( - 1 ) " - 1 1 y } ~  1 ~ { 2 m b + [ ( - 1 ) " - 1 ] y }  . 

nlac lc{2mb + [ ( - 1 ) "  - l ] y }  1 2 C 2  

nlac 2 2  n u  

where 
1 = (n,  m, I )  

(T: = n 2 a 2 + { 2 m b + [ ( - 1 ) "  - I ] Y } ~ + I ~ C ~  

if p = 2 and n odd 
otherwise A,/ = { -; 

with 

Z,/Z"/ = 0 if p or v = 0 

and 
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9. Curved-space examples 

Another classic space-form problem is the ‘spherical’ one: find all three-spaces locally 
isometric to the three-sphere, S 3 .  The answer was given by Threlfall and Seifert 
(1930) and a modern discussion can be found in Wolf (1967). (See also Ellis (1971) for 
a useful summary of results.) 

The corresponding space-times are T @S3/r  with r a discrete, freely acting 
subgroup, without fixed points, of the group of isometries of S 3 ,  which is the product 
of left and right Clifford translations on S 3 ,  SU(2) C3 SU(2), homomorphic to SO(4). 

The analysis in § 2 spotlights the importance of quantum mechanics on S 3 ,  which is 
a topic with a certain literature (Schulman 1968, Dowker 1970, 1971). The treatment 
is, or can be, purely group theoretical because S 3  is isometric to SU(2). 

We shall use the formalism of § 2 to determine the effective Lagrangian L(’) for a 
scalar field on T 0 S3/I‘. 

The eigenvalues and degeneracies for the conformally coupled scalar field on the 
Einstein universe, T 0 S 3 ,  are well known and are 

2 i,, = (n/a>*, d , , = n ,  n = 1 , 2 , 3 .  . . 
where a is the radius of S 3 .  Thus the integrated zeta function for S 3  is 

W 

1 3 ( s ) =  ls3(s)= 1 n2(n2/a2)-’ = ~ ~ ’ l ~ ( 2 s - 2 ) .  
n = l  

Then for the total energy we have, for real fields, 

which is the standard result (Ford 1975, Dowker and Critchley 1976b). Note again 
that there are no divergences in the zeta-function approach since the a 2  coefficient is 
zero for the Einstein universe. 

The density ( pWv) can now be found by noting that ( f w w )  is zero and that ( pij) must 
be proportional to go. Further (foe) = E/2rr2a since space is homogeneous, and 
( t . , ) = O  since the space-time is static. The result is that given by Dowker and 
Critchley (1976b). 

The simplest space covered by S 3  is P 3  = S3/Z2, the projective three-sphere, 
obtained from S 3  by identifying antipodal points. 

There are two, one-dimensional representations (reps) of Z 2  giving two sorts of 
scalar fields on P 3 ,  

= ’} ‘twisted’rep B. 
a(-1)= -1 

a(1) = ‘1 trivial rep A 
a(-1)= 1 

The choice of the trivial representation kills all the half integral angular momentum 
representations in the expansions while the twisted one removes the integral angular 
momentum eigenvalues and functions (Schulman 1968, Dowker 1972a, b). Then for 
the zeta functions we find 

m 

l A ( s ) =  a2’ 1 (2j+ ~ ) - ~ ( ’ - l ) =  a2’&(2s - 2)(1- 22-2s) 
j = O , 1 ,  ... 

m 

&&) = a2s c (2j + l)-2(s-11 = a2s22-2slR(2s - 2) 
j =!,f,. . . 
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and for the total vacuum energies, 

EA = - 7 1 2 4 0 ~  (77) 

EB = 1/30a. (78) 

The global group of isometries of P3 is still spin(4) so that one would expect (f,+,) 
to have the same tensor structure as that for S 3 .  Further, P 3  is homogeneous so that 
(foe),,, = E A , B / ~ 2 a 3  and thus the (fFv) for P 3  is just a numerical factor times that for 

For the more general case, S3/r,  we can use the analysis of § 2. There are two 
basic classes of manifolds-those that are homogeneous and those that are not. We 
represent a point of S 3  by the group element, 9 E SU(2). The global symmetry group 
of S 3  is then SU(2)L 0 su(2)R, exhibited as the action 9 + 5977, where 6 E SU(2)L and 
77 E su(2)R. The covering group r is likewise given as r = rL 0 r R  where rL and r R  

are finite, freely acting subgroups of SU(2)L and su(2)R, without fixed points. Thus, 
S3/r is obtained from S 3  by identifying the points 9 and Y L q Y R  where yL ranges over 
all elements of rL, and likewise for yR and rR. The homogeneous spaces are those for 
which r L  (or r R )  consists of just the unit element, 1. 

The zeta function on S3/r  can now be constructed from the eigenfunctions of the 
Laplace-Casimir operator or, from (lo), using the fact that .i, is a left translation times 
a right one. (The term ‘translation’ is not actually too indicative here since it  is the fact 
that YL and YR belong to SU(2) groups, and therefore correspond to ‘rotations’, that 
we wish to bring out. The analysis is just angular momentum theory.) 

s3. 

For the non-local zeta function we find 
30 

2 3 -1 2 s  
S 3 ( &  4’9 4’0= (2.?r a ) a c a ( y )  c 11-2SXl(9’YR9’r-1YL) (79) 

Y = ( Y L * Y d  1 = 1  

where ,yl(q) is the character of the /-representation of SU(2) on the element q, i.e. 

,yl(q) = sin(lO)/sin 8, (I = 2 j +  l), 

where a8 is the radial distance on S 3  between the origin (= unit element) and the point 
4. 

It is seen that if either r L  or r R  is trivial, l ( s ,  q, 9) is independent of 9, which is a 
consequence of the homogeneity of the space. 

Expression (79) can be written in terms of the  one-dimensional Epstein zeta 
function, (52). Thus 

where BY = B,(q‘, 9”) = .9(9’yRq“-1yL) is the ‘radial angle’ between the unit element 
and the point C~‘”’’-~YL. 

We are now interested in finding the vacuum average of the stress-energy tensor 
( f w , )  for these general spherical space-forms. 

For the homogeneous case (foe) can be most easily found by first evaluating the 
total energy E, i.e. the integrated (Too), and then dividing by the volume since (rfbo) 
will be independent of position. Also E is the negative of the effective Lagrangian so 
we might as well obtain this quantity before going on to the local densities. Firstly (80) 
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is written in terms of 'images' by virtue of (54) as 

where we have separated off the term with y L = l ,  y R =  1 (i.e. y = l ) .  In (82), 
8, = 8(qyLq-'yR) and is independent of q if either yL or yR equals the unit element. 

The integrated zeta function is already given quite generally in § 1 by equation (12) 
but of course also follows from (81) by setting q' and q" equal and then integrating 
over S3/r. If the functional relation, 

is employed we have 
cc 

5 3 ( ~ ) =  Ir/-1a2s C a ( y >  C I-*~X~(YL)X~(YR) 
Y 1=1 

which is again expressible as an Epstein zeta function. Thus we find 
0 

M S )  = iri-'aZS C a ( r ~ 4  sin oL sin eR)-1[Z/(e,-e~)/zaj(2s)-Zi(e,+~~,/21r/(2s>l 
Y 

where OL, = 8(-yL), and OR, = 8(yR), depend on y. 
The image form of this expression is, from (54), 

(83) 

X (4 sin eL sin 6R)-1[Zl(eL-s6"/2"1(1 - 2~)-Z/(~~+@$'~~/(l- 2s)l. 

The evaluation of the local densities ('?wv) is more complicated. We write them as 
coincidence limits, as in (45), 

(fey) = 2(Re Tev14(1, t, q, t ' ,  4')) .  

The factor 2Re is inserted when it is required to consider complex fields as, e.g., 
when a(?)  is not a real representation. It will not be explicitly written into the 
following equations. (This rather cavalier treatment of complex fields can be made 
more precise if the charge matrix formalism is used.) 

can be found in DeWitt (1975), for example, but will be 
repeated here for convenience. Thus 

The expressions for 

Foe= i[ao ao+(2e-t)(ao ~ o - ~ ' V j ~ ) + ~ ( ~ 2 + ~ ' 2 ) + ~ g ~ ~  
and 

Fij =i[(26- 1 ) ~ , ~ ~ ~ + g ~ ~ , ( 2 ~ - ~ ) ( a ~  ~,-o'v,.) 
-g (o ,~V, ,+  o,v,)+~g~j~(02+o'2)+~gRg,j~]. 
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From (79)  it is easily proved that [3(s, q ' ,  4")  = [: (s, 4", q' ) ,  SO that ( f i j )  will be 
symmetrical in i and 1, as required. If U ( y )  is real, i.e. a ( y )  = a (y- ' ) ,  then 53(s, 4 ,  q ' )  is 
symmetrical in q and q ' .  Otherwise, because is real the effect of taking the real part 
is to have 1 (a ( y ) +  a ( y - l ) )  in place of a ( y ) .  

Although in this section we are interested only in the value 6 = 4, the expressions 
for FFv have been written down in generality, for future reference. 

It is convenient to project ( fuv) onto the Killing vectors of the local isometry group 
of T @S3/r,  which is E' 0 SU(2)O SU(2). (foe) remains the same while (?,i) is 
replaced by 

( T a b )  = A3L(fi,)T a, 6,  = 1, 2 ,  3, 

where the AL(q) are the Killing vector fields of the left SU(2) group. The right ones 
could have been chosen, or some combination of the two. 

The idea, in the technical evaluation of (fFv), is to reduce the problem to one in 
angular momentum theory. A start is made by replacing the derivatives Vi  by the 
generators, Xa, of the left group, 

Xa = AL(q) ai 
satisfying 

xaxb - x&a = CabcXo with CabC = 2 E a b C / U .  

Then, firstly, 

(foo)=iU{ao a o + ( 2 ~ - d ) [ ( ~ ~ + ~ ' ~ ) / 2 + ~ ~ ~ ~ a ~ b I ) f 4 ( 1 ,  t, q, t ' ,  d)n 
where X 2  (=sabX,Xb)  is the Laplacian on S 3 ,  and the Casimir operator on SU(2), 
while 

( f o b )  = i!{(x(axb)+x;axb) ) / 2  + ( 2 6 -  1)[(x(axb)+x;axb) ) / 2  + xaxb] 
- s a b ( 2 6  - 4 )[(x' + x1*)/2 + X .  X ' I  - ~ , ~ 2 6 / a ~ } 5 4 ( 1 ,  t, q, t, q')n. 

Some slight manipulations have been made to get these forms, the point of them 
being that when X ' ,  acting on the Green function, is equivalent to -X,  the terms in the 
square brackets vanish. It can also be seen that, in general, X ' 2  can be replaced by X 2  
in the coincidence limit. 

The next step is to eliminate the space-time zeta function in favour of l3 so that 
expression (79)  can be used. (46) yields, 

@O0) = d i 3 ( - d 9 q , 4 ) -  1(26 - t )u[x2 + x .  x x 3 ( f ,  q, S"I (84) 

( 8 5 )  

( f a b  ) = - d u{(x(axb ) + x ;ax b f )/ 2 + (26 - 1 )[ (X(aXb) + xiax b ) )/ 2 + xax b ] 
- G a b ( 2 6  - 1 ) [x2 + x .  x ' ]  - sab26/a2)[3(+ t ,  9, qf)n. 

Equation (79) displays l 3  as a sum of terms involving the character x l ( q Y R q ' - ' Y L ) .  
Because the sums over YL and YR can be re-ordered, this is equivalently written (in the 
sum) as 

(86) 
-1 -1 

X l ( 4 Y R 4 ' - ' Y L ) = X l ( q ' Y R  4 YL' ) = X I ( q ' Y R q - ' Y L )  

where we have used the facts that a(-y-')= a * ( y )  and x l ( q - ' ) =  xl(q)=xI(gqg-'). 
The effect of the generators X and X '  on the character is required. This is a 

standard question, but perhaps the details will be useful. Firstly consider the quantity 
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XQX(qyRq‘-lyL) and, for convenience, let us denote the point qyRq’-lyL by 4”. Now 
the equation q” = qyRq’-lyL is a right motion taking q into q” and, since the Lie 
derivative of the  Killing vector fields Ah is zero for right transformations, it is easy to 
show that X is equivalent to X”. A similar result holds for X‘, if we use the alternative 
argument of x given in (86), namely 4‘” = q’yRq-lyL. 

Inspection of (84), (85) shows then that one  of the things needed is xaxbx(q) ,  
where q is, for the moment, a generic point (actually either q”’ or  4”). Quite generally 
we must have 

(87) C A  XQXbxf ( 4 )  = A/  (4 )6Qb f Bf4aGb -k c / ( q  )cab qc 

where the A,  B and C are functions of the angle O(q), just like x (q ) ,  and 4 is the unit 
vector at the origin tangent to the geodesic connecting q t o  the origin. 

Use of the commutation rules for the X and the easily verified result 

X Q X f  ( 9 )  = )dQx I ( 4 )  with x ;  ( 4 )  = axf (q>/ae 

enables us to determine C as 

cr = (1/2a)X;(q) .  

The  evaluation of A and B is a little more involved, but not much. The  trace of 
(87) produces 

3Af + Br = X2x1 = [(l- 12)/a2]xf (88) 

since the characters are eigenfunctions of the Casimir operator. Next, (87) yields 

AI + B f  = $Q4bXaXbXf(q)= -(4/a2)4“4’ tr(.TJaD(q))= - (4 /a2 )  tr((J. 4)2D(q) )  

where D ( q )  is the SU(2) representation matrix in the representation for which J is the 
generator, J 2  = ( I 2  - 1) /4 ,  i.e. 

D ( q )  = exp(i284. J )  

for our  normalisation. Thus 

a2 a2 
ae2 Ai + Bf = - tr D = a - 2  z x f ( q ) ,  

and A and B are found. 
Expression (87) enables us to find the x,xb and XhXb terms in (84) (85). In fact 

since q”’ = q” in the coincidence limit, q = q‘, the X’X’ terms contribute exactly the 
same as the XX ones, in this limit. 

The  mixed term, X,Xb, is more trouble. O n e  approach is to change the Xb into an  
X ,  and then use (87). From the fact that the Lie derivative of the  A: under a left 
transformation is given by 

f,A b = cabc A 

it is straightforward to show that 

xbx / (q”)=  -Dcb(y;l )X&f(q’’), 4’’ = qyRq’-’yL, 

where Di(g)  is the spin-one (‘adjoint’) representation matrix corresponding to the 
group element g. 
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Then 

Similarly we have 

X& (4"') = -D C b  ( y L )x:x:xl (q  "') 

so that, because q" '=  q" in the coincidence limit, (fob) is symmetrical. 
Another way of showing this necessary symmetry is directly from (79), ( 8 5 ) ,  (87) 

and (90). Although not strictly required, it is instructive to go through this alternative 
method. From (79), (90) and (87) i t  is seen that we must consider the expression, 
coming from the XaXb term in (85), 

-E [DCb(YL1 )A(q")&c +4*:ifDcb(?'L' )B(q")+DCb(YL1 )ca,d4:c(qf')1 Re a ( Y >  

with q " = q y ~ q - ~ y ~ _ .  

(91) 
Y 

The basic idea is to use the fact that A ,  B, and C are unchanged if 4'' is replaced by 
its transformed inverse, $'= qyk1q- ' yL1  (= yLq"-'yL1) in order to re-arrange the 
sum over y by setting y + y-l  (i.e. yL+  yL1 and Y R +  yR1). This combined operation 
restores the arguments of A,  B and C to q", in (91), but changes that of the D to yL 
and replaces 4" by 81'. The relation between q"-' and 4" is an adjoint transformation so 
that 

- q r t b = ~ b  ( - l ) - u a  
a Y L  4 

is the connection between the two sets of canonical parameters (4"" = 4:). 
A property of the adjoint representation matrix D that is needed is that it is real, 

which implies that its inverse and transpose are the same. Further, we have the 
generator property 

- c , d c ~ ' b  (Y) = ~~c &D ea (7-l) 

With these relations it is straightforward to check that interchanging a and b in 
(91) is equivalent to the above combined operation, under which the sum is 
unchanged, so that (91) is symmetric. 

Considerable simplifications occur for the homogeneous case, i.e. when either rL 
or r R  is the trivial group. Thus, when r R  is composed of just the unit element, it is 
easy to show from (90), or from (91), using 

xDbc ( 4 )  = -C L D ~ ~  (413 

that, in the limit q'+ q (when q" = yR), 

XaXbxr(q") = -X&Y&l(q")* 

Applied to equations (84) and (85 ) ,  this formula, or rather its symmetrical part, shows 
that the terms in square brackets vanish and we have the comparatively simple 
expressions 
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Here 13(s, q, q )  is given by equation (79) and Bf follows from (88) and (89) as 

We have also set yL = y. 
As a check we notice that when 6 = a ,  (f"") is traceless, as required. Further, 

equation (92) agrees with the general result, mentioned earlier, that in the homo- 
geneous case the energy density can be found from the total energy by dividing by the 
volume. Then (Foe) should be the negative of the Lagrangian density. A comparison 
of (82) with (92) shows that this is so. 

In the cases rL = I, and rL = z2 we expect the terms proportional to (?o?b -+sob) 
to vanish from general symmetry considerations and explicit calculation confirms this. 
In the other cases the set of image points (of the origin, say), { y }  provides a set of 
intrinsic directions-those of the 4eodesics connecting the images to the origin-so 
that the geometrical structure of ( T a b )  is correspondingly richer. 

Specific forms for (82) and (93) will now be given. The detailed algebra is not 
particularly interesting. Again we can use either the eigenfunction form, (80), or the 
classical path form, (81). Repeated application of the formula 

yields the results 

and 

( f a b ) = - i a a b l 3 ( - $ ,  4, 4 )  

(96) 
1 

8.ir U 
-- E a ( ~ ) ( ? ~ ? ~  -isab>[cosec2($ e,)- C O S ~ ~ ~ ( ;  e,)]. 

Equation (95) is valid in all cases and, in the homogeneous case, also equals the 
negative of (foe), (92). The total energy is given generally by, 

We have now set 6 equal to b. For general 6, (92) and (93) are still true except that 
the 1-2s factor in (93) and in the definition of l3, (79), is to be replaced by (12+6[- 
l)-'. The effects of this will not be given here. 

As a simple example it can be checked that (95) and (96) reproduce the previous 
results for P3 = S3/Z2,  equations (77), (78). For this case there is only one 0, for 
y # 1, i.e. r. P 3  is a particular example of the 'lens-space', S3/Z , ,  for which there are 
(m - 1) e;s, for y # 1, i.e. e, = n(2n./m) for n = 1,2 ,  . . . , m - 1. 

The representations a ( y )  of Zm are generated by the mth roots of unity, 
1, w ,  U * ,  . . . , w . For example, the trivial representation is generated by 1 and the 
twisted (real) one by w ' " ' ~  = -1, if m is even. If m is odd there are no twisted real 
fields. (H'(S3/T; Z 2 ) - H ' ( T ;  Z 2 ) - 0  if r=Z,, m odd.) 

( f F v )  can be calculated for the lens-spaces using (95) and (96) on substitution of 
the specific values of 8, = en and Re a ( y ) =  Re a ( n ) =  cos(2rrn/m), where w' is the 

m-1 
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generator of the representation a(?), r = 0 ,  1,2 ,  . . . , m - 1.  Also, in accordance with 
some previous remarks, we have taken the real part of a(?), so that (PFv)  must be 
multiplied by two for genuinely complex fields. 

For homogeneous lens-spaces f a q b  is the same for all pre-images (except the 
antipode) and so the factor ( f a q b  -fa,,) in (96) can be taken outside the summation. 
(Then, if desired, one of the dreibeine axes at the origin can be taken parallel to one 

The sums can be done if r = 0 (the untwisted case) to give the simple formulae 
9.1 

(?oo) = -(1440v2a4)-'(m4+ 10m'- 14) 

E = -(720a)-'(m3+ 10m - 14m-') 

(fob)= ( 3 6 0 ~ ' ~ " ) - ' [ & 3 , ~ ( m ~ +  10m2- 14)+(q,qb -$8,b)(m2-4)(m2- I)]. (98) 

Clearly, the corresponding expressions for other values of r and any specific m are 
easy to evaluate. As a sample the total energies on the space S3/Z4 for the twisted 
and untwisted cases are found to be 

-67 /480~ ,  untwisted 
+53/480a, twisted real. 

E = {  

Since the physical relevance of these calculations is somewhat obscure it is not 
called for now to give more examples of these lens-spaces. However, for variety, we 
might be permitted to consider an example of a 'prism-space', S 3 / D L ,  where DL is 
the binary, or double, dihedral group of order 2m (e.g. Hamermesh 1962, Coxeter 
1974). When m = 2, Di  is the eight-group or quaternion-group. The seven angles e,, 
y # 1, are T, a group of three i d s  and a group of three tv's. For the total energy there 
results, 

- 187/960a untwisted 
E = {  

53/960a twisted real. 

spaces, can be found in the classic article by Threlfall and Seifert (1930). 

homogeneous space-forms: 

Octohedron-space, (S3 /T ' ) ,  

Interesting geometrical and topological information about these, and the other 

Simply for the record we present the values of the total energy for the remaining 

E = -3761/8640a, (trivial). (No twisted real fields.) 

Truncated-cube-space, ( S 3 / 0 ' ) ,  

E = -11321/17280a, (trivial); = 3799/17280a, (twisted). 

Dodecahedron-space, ( S 3 /  Y') ,  

E = -43553/43200a, (trivial). (No twisted real fields.) 

These numbers would appear to have only a curiosity value and so we do not give 
the full ( fwv). The non-homogeneous cases are also passed over at this time except to 
say that the various quantities 5?(')(4), (PFV)(4)  etc will be constant on the orbits of the 
global isometry group (which is the centraliser of r in SU(2)O SU(2)). This is also 
clear from the actual construction of these quantities, which depend only on the 
element 47,q-l yL. 
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There is no problem in extending the calculations to the hyperbolic spaces, H 3 / r ,  
although the complete classification of these is not known. 

10. Comments and conclusion 

The specific results we have obtained for ( PFV) are probably somewhat academic but 
they are, we feel, amusing combinations of various interesting pieces of analysis. One 
hope is that the general formalism and particular calculational methods will prove of 
value. 

The analysis can be extended to vector-valued fields, e.g. spinors. The methods 
will be detailed at another time. Although the Klein bottle and Mobius band are not 
parallelisable it  is possible to patch up a twisted spinor theory by using the freedom 
provided by the a (7 ) .  The resulting (fF,,) are somewhat complicated. 

The finite temperature versions of our results are straightforwardly found and, 
again, will be reported in a later communication. 

It is possible to use the vacuum-averaged (fpv) on the right-hand side of Einstein’s 
field equations in the hope that this represents, in some way, the back-reaction of the 
field on the geometry. From the forms of (fFv) that we have obtained it is clear that 
twisted fields have a very different back-reaction to untwisted ones, as already 
remarked by Isham (1978). Equations (23), (24) and (77), (78) show the typical sign 
change. It is also to be noted, from say (76), (77) and (78), that altering the topology 
can change the sign of the energy. It is the twisted field on P3 that has the same sign of 
the energy as the field on S 3 ,  and this seems to be true for the other space-forms as 
well. Thus, if one asks for self-consistency via Einstein’s equations, it is only the 
vacuum fluctuations of a twisted field that can support an Einstein universe of elliptic 
(P’) spatial topology. However a difficulty arises if self-consistency is required for the 
other spherical space-forms. The general expression for ( T a b ) ,  (96), is not of the same 
form as Rob - 1 gabR since it contains additional geometrical structure. 

A number of points require elaboration. Fundamentally one needs a better 
understanding of the connection between the field theory and the Schwinger-DeWitt 
‘quantum mechanics’ so that the significance of the a(? )  factors can be further 
considered. 

Finally we would like to thank C F Hart for sending a preliminary version of a 
paper concerned with the vacuum-averaged stress-energy tensor on the Euclidean 
space-forms. Where our results overlap they agree. 
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